Überblick: Funktionen und ihre Graphen

1. Konstante Funktion: f(x) = c

Nullstellen: entweder keine oder ganz \mathbb{R} (wenn c = 0)

Polstellen / Definitionslücken: keine

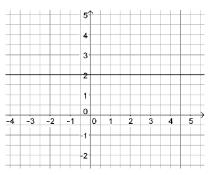
Symmetrie: Achsensymmetrie zur y-Achse;

für c = 0 auch PuSy zum Ursprung und ASy zur x-Achse

Asymptoten: die Funktion ist ihre eigene Asymptote

Ableitung: f'(x) = 0

Stammfunktion: $F(x) = c \cdot x + C$ (also eine lineare Funktion mit Steigung c)



Lineare Funktion: f(x) = mx + t, $m \ne 0$ (Spezialfall t = 0: Ursprungsgerade)

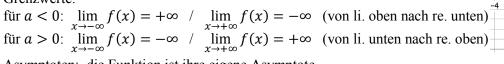
Nullstellen: genau eine NS, nämlich $x_0 = -\frac{\iota}{m}$

Nullstellenform: $f(x) = m\left(x + \frac{t}{m}\right)$

Polstellen / Definitionslücken: keine

Symmetrie: allgemein keine; für t = 0 Punktsymmetrie zum Ursprung

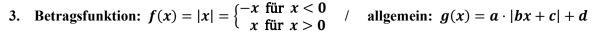
Grenzwerte:



Asymptoten: die Funktion ist ihre eigene Asymptote

Ableitung: f'(x) = m

Stammfunktion: $F(x) = \frac{m}{2} \cdot x^2 + t \cdot x + C$ (also eine quadratische Funktion)



Nullstellen von f: genau eine NS, nämlich $x_0 = 0$

Polstellen / Definitionslücken: keine (aber Knick bei x = 0 bzw. $x = -\frac{c}{h}$!)

Grenzwerte: $\lim_{x \to \pm \infty} f(x) = +\infty$ (von links oben nach rechts oben)

$$\lim_{x \to \pm \infty} g(x) = \begin{cases} -\infty & \text{für } a < 0 \\ \infty & \text{für } a > 0 \end{cases}$$

Asymptoten: die Funktion ist ihre eigene Asymptote;

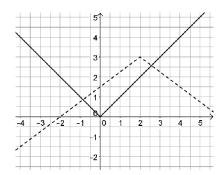
Achtung: zwei verschiedene Asymptoten für $x \to \pm \infty$!

Symmetrie von f: Achsensymmetrie zur y-Achse

Ableitung: $f'(x) = \begin{cases} -1 & \text{für } x < 0 \\ +1 & \text{für } x > 0 \end{cases}$ (Definitionslücke bei x = 0!) $g'(x) = \begin{cases} -ab & \text{für } bx < c \\ +ab & \text{für } bx > c \end{cases}$ (Definitionslücke bei $x = -\frac{c}{b}$)

$$g'(x) = \begin{cases} -ab & \text{für } bx < c \\ +ab & \text{für } bx > c \end{cases}$$
 (Definitionslücke bei $x = -\frac{c}{b}$)

Stammfunktion: $F(x) = \begin{cases} -\frac{1}{2}x^2 + C_1 & \text{für } x < 0\\ \frac{1}{2}x^2 + C_2 & \text{für } x > 0 \end{cases}$



Quadratische Funktion: $f(x) = ax^2 + bx + c$ (das ist die sog. Normalform)

Nullstellen: abhängig vom Wert der Diskriminante $D = b^2 - 4ac$:

keine NS für D < 0; eine NS für D = 0, und zwar $x_0 = -\frac{b}{2a}$; zwei NS für D > 0, und zwar $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$

Nullstellenform: nicht möglich für D < 0; $f(x) = a(x - x_0)^2$ für D = 0; $f(x) = a(x - x_1)(x - x_2)$ für D > 0

Scheitelpunktform: $f(x) = a(x - x_S)^2 + y_S$ mit Scheitelpunkt $S(x_S|y_S)$; $x_S = \frac{x_1 + x_2}{2} = -\frac{b}{2a}$ (mittig zwischen NS) hier gibt a die Streckung der Parabel in y-Richtung an, x_S die Verschiebung in x-Richtung und y_S die in y-Richtung

Polstellen / Definitionslücken: keine

Symmetrie: allgemein keine; für b = 0 (bzw. $x_S = 0$) ASy zur y-Achse

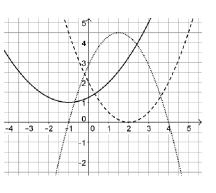
Grenzwerte:

für a < 0: $\lim_{x \to -\infty} f(x) = -\infty$ / $\lim_{x \to +\infty} f(x) = -\infty$ (von li. unten nach re. unten) für a > 0: $\lim_{x \to -\infty} f(x) = +\infty$ / $\lim_{x \to +\infty} f(x) = +\infty$ (von li. oben nach re. oben)

Asymptoten: keine linearen Asymptoten

Ableitung: f'(x) = 2ax + b

Stammfunktion: $F(x) = \frac{a}{2}x^3 + \frac{b}{2}x^2 + cx + C$



Potenzfunktion/Wurzelfunktion: $f(x) = a \cdot x^n$

a) $n \in \mathbb{N}$

Nullstellen: genau eine NS, nämlich $x_0 = 0$; für ungerade n: NS mit VZW / für gerade n: NS ohne VZW

Gemeinsame Punkte: f(0) = 0, f(1) = a, $f(-1) = \pm a$ (je nachdem, ob n gerade / ungerade)

Polstellen / Definitionslücken: keine

Symmetrie: für n ungerade Punktsymmetrie zum Ursprung; für n gerade Achsensymmetrie zur y-Achse

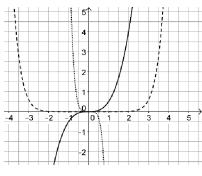
Grenzwerte:

a < 0, n ungerade: $\lim_{x \to -\infty} f(x) = +\infty$ / $\lim_{x \to +\infty} f(x) = -\infty$ (li. oben \to re. unten) a < 0, n gerade: $\lim_{x \to -\infty} f(x) = -\infty$ / $\lim_{x \to +\infty} f(x) = -\infty$ (li. unten \to re. unten) a > 0, n ungerade: $\lim_{x \to -\infty} f(x) = -\infty$ / $\lim_{x \to +\infty} f(x) = +\infty$ (li. unten \to re. oben) a > 0, n gerade: $\lim_{x \to -\infty} f(x) = +\infty$ / $\lim_{x \to +\infty} f(x) = +\infty$ (li. oben \to re. oben)

Asymptoten: für n > 1 keine linearen Asymptoten

Ableitung: $f'(x) = a \cdot nx^{n-1}$

Stammfunktion: $F(x) = \frac{a}{n+1}x^{n+1} + C$



b)
$$n \in \mathbb{Z}^-$$
: negative Potenz $n = -m$: $x^{-m} = \frac{1}{x^m}$

Nullstellen: keine

Polstellen / Def.lücken: genau eine PS: $x_0 = 0$; für ungerade n: PS mit VZW / für gerade n: PS ohne VZW

Gemeinsame Punkte: f(1) = a, $f(-1) = \pm a$ (je nachdem, ob *n* gerade / ungerade)

Symmetrie: für n ungerade Punktsymmetrie zum Ursprung; für n gerade Achsensymmetrie zur y-Achse

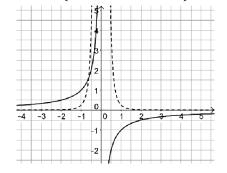
Grenzwerte: a < 0, n ungerade: $\lim_{x \to -\infty} f(x) = +0$ / $\lim_{x \to +\infty} f(x) = -0$ / $\lim_{x \to 0} f(x) = +\infty$ / $\lim_{x \to 0} f(x) = -\infty$ a < 0, n gerade: $\lim_{x \to -\infty} f(x) = -0$ / $\lim_{x \to +\infty} f(x) = -0$ / $\lim_{x \to 0} f(x) = -\infty$ / $\lim_{x \to 0} f(x) = +\infty$ / $\lim_{x \to 0} f(x) =$

Asymptoten: für $x \to \pm \infty$: senkrechte Asymptote x = 0; für $x \to 0$: waagrechte Asymptote y = 0

Ableitung: $f'(x) = a \cdot nx^{n-1}$

Stammfunktion: für $n \neq -1$: $F(x) = \frac{a}{n+1}x^{n+1} + C$

Sonderfall n = -1 ($f(x) = \frac{1}{x}$): $F(x) = \ln|x| + C$



c)
$$n \in \mathbb{Q}$$
: rationale Potenz $n = \frac{p}{q} \min p, q \in \mathbb{Z}$: $x^{\frac{p}{q}} = \sqrt[q]{x^p} = \left(\sqrt[q]{x}\right)^p \Rightarrow \mathbf{Wurzelfunktion}$

Nullstellen: genau eine NS, nämlich $x_0 = 0$

Polstellen / Definitionslücken: nicht definiert für x < 0 (auch wenn der TR für z.B. $\sqrt[3]{-8}$ eine Lösung angibt)

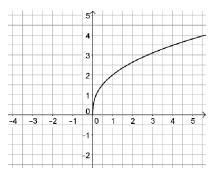
Grenzwerte: $\lim_{x \to +\infty} \sqrt[q]{x} = +\infty$ (auch wenn der Funktionswert immer langsamer ansteigt)

Asymptoten: keine!

Symmetrie: da nur für positive x definiert: keine

Ableitung:
$$f'(x) = a \cdot nx^{n-1} = a \cdot \frac{p}{q}x^{\frac{p-q}{q}}$$

Stammfunktion:
$$F(x) = \frac{a}{n+1}x^{n+1} + C = \frac{a \cdot q}{p+q}x^{\frac{p+q}{q}} + C$$



Ganzrationale Funktion (Polynomfunktion) n. Ordnung: $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$

Nullstellen: für n ungerade: zwischen 1 und n NS möglich / für n gerade: zwischen 0 und n NS möglich Raten von NS (ganzzahlige NS sind Teiler von a_0) und Polynomdivision, bis der Grad des Restpolynoms auf 2 gesunken ist, dann Lösungsformel

bei k-fachen NS: k ungerade \Rightarrow NS mit VZW / k gerade \Rightarrow NS ohne VZW

Nullstellenform: $f(x) = a_n(x - x_1)(x - x_2) \cdot ... \cdot g(x)$; g(x) ist ggf. Polynom geradzahliger Ordnung ohne NS

Polstellen / Definitionslücken: keine

Symmetrie: falls nur geradzahlige Potenzen auftreten: ASy zur y-Achse

falls nur ungeradzahlige Potenzen auftreten: PuSy zum Ursprung

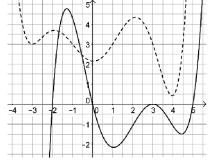
in allen übrigen Fällen: keine Symmetrie

Grenzwerte: betrachte nur die höchste Potenz, also den Term $a_n \cdot x^n$,

und wende die Regeln aus 5a) an

Asymptoten: für n > 1 keine linearen Asymptoten

Ableitung / Stammfunktion: Summanden einzeln ableiten/integrieren, siehe 5a)



Gebrochenrationale Funktion: $f(x) = \frac{p(x)}{q(x)}$, wobei p(x) und q(x) Polynome vom Grad z bzw. n sind

Nullstellen: alle NS des Zählerpolynoms p(x), sofern der Nenner dort nicht ebenfalls 0 ist (siehe 6)

Polstellen / Definitionslücken: alle NS des Nennerpolynoms q(x); Polstellen sind es nur, wenn es keine hebbaren Definitionslücken sind, also wenn der Zähler dort nicht ebenfalls 0 ist bei k-fachen PS: : k ungerade ⇒ PS mit VZW / k gerade ⇒ PS ohne VZW

Symmetrie: falls p(x) und q(x) gleiche Symmetrie haben: Achsensymmetrie zur y-Achse falls p(x) und q(x) unterschiedliche Symmetrie haben: Punktsymmetrie zum Ursprung falls mindestens eine der beiden Funktionen p(x) oder q(x) keine Symmetrie hat: nicht symmetrisch

Grenzwerte / Asymptoten: abhängig von der Parität (gerade/ungerade) von Zählergrad z und Nennergrad n sowie den Koeffizienten der jeweils höchsten Potenz ($a_z x^z$ im Zähler und $b_n x^n$ im Nenner) gilt jeweils für die <u>Vorzeichen</u>:

- gleiche Parität von z und n, gleiches Vorzeichen von a_z und $b_n \Rightarrow \lim_{x \to \pm \infty} f(x) > 0$

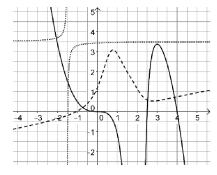
- gleiche Parität von z und n, unterschiedliche Vorzeichen von a_z und $b_n \Rightarrow \lim_{x \to \pm \infty} f(x) < 0$ unterschiedliche Parität von z und n, gleiches Vorzeichen von a_z und $b_n \Rightarrow \lim_{x \to -\infty} f(x) < 0$, $\lim_{x \to +\infty} f(x) > 0$ unterschiedliche Parität von z und n, unterschiedl. Vorzeichen von a_z und $b_n \Rightarrow \lim_{x \to -\infty} f(x) > 0$, $\lim_{x \to +\infty} f(x) < 0$

für
$$z < n$$
: $\lim_{x \to \pm \infty} f(x) = 0$ (waagrechte Asymptote $y = 0$)

für
$$z = n$$
: $\lim_{x \to \pm \infty} f(x) = \frac{a_z}{b_n}$ (waagrechte Asymptote $y = \frac{a_z}{b_n}$)

für z = n: $\lim_{x \to \pm \infty} f(x) = \frac{a_z}{b_n}$ (waagrechte Asymptote $y = \frac{a_z}{b_n}$) für z > n: $\left| \lim_{x \to \pm \infty} f(x) \right| = \infty$ (Vorzeichen s.o.) Spezialfall: $z = n + 1 \Rightarrow$ schräge Asymptote y = mx + t; die Geradengleichung ergibt sich durch Polynomdivision p(x): q(x) und Vernachlässigung des Rests

Ableitung: im Allgemeinen kompliziert, Anwendung der Ouotientenregel! Stammfunktion: im Allgemeinen für uns unlösbare Fragestellung!



8. Exponential funktion: $f(x) = a \cdot b^x$ mit b > 0 (Spezial fall: natürliche Exponential funktion $f(x) = a \cdot e^x$)

Nullstellen: keine

Polstellen / Definitionslücken: keine

Symmetrie: keine

Gemeinsame Punkte: f(0) = a (da $b^0 = 1$ für alle b)

Grenzwerte: Variationen:

a)
$$a > 0$$
, $f(x) = a \cdot b^x$ (,,normal", Wertemenge \mathbb{R}^+ , $\lim_{x \to -\infty} f(x) = +0$, $\lim_{x \to +\infty} f(x) = +\infty$)

b)
$$a < 0$$
, $f(x) = a \cdot b^x$ (an x-Achse gespiegelt, Wertemenge \mathbb{R}^- , $\lim_{x \to -\infty} f(x) = -0$, $\lim_{x \to +\infty} f(x) = -\infty$)

c)
$$a > 0$$
, $f(x) = a \cdot b^{-x}$ (an y-Achse gespiegelt, Wertemenge \mathbb{R}^+ , $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = +0$)

d)
$$a < 0$$
, $f(x) = a \cdot b^{-x}$ (punktgespiegelt am Ursprung, Wertemenge \mathbb{R}^- , $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = -0$)

e)
$$a > 0$$
, $f(x) = a \cdot b^{-x^2}$ (Gaußsche Glockenkurve, Wertemenge]0; a], $\lim_{x \to +\infty} f(x) = +0$)

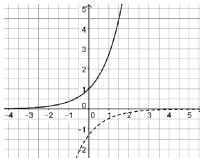
Asymptoten: waagrechte Asymptote y = 0 jeweils auf einer Seite im Unendlichen (bei e) auf beiden Seiten)

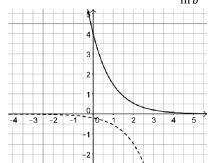
Ableitung Spezialfall:
$$f(x) = a \cdot e^x \implies f'(x) = a \cdot e^x \land f(x) = a \cdot e^{k \cdot x} \implies f'(x) = a \cdot k \cdot e^{k \cdot x}$$

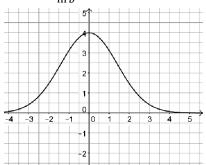
Ableitung allgemein:
$$f(x) = a \cdot b^x = a \cdot e^{\ln b^x} = a \cdot e^{x \cdot \ln b} \implies f'(x) = a \cdot \ln b \cdot e^{x \cdot \ln b} = a \cdot \ln b \cdot b^x$$

Stammfunktion Spezialfall:
$$f(x) = a \cdot e^x \implies F(x) = a \cdot e^x + C \quad / \quad f(x) = a \cdot e^{k \cdot x} \implies F(x) = \frac{a}{k} \cdot e^{k \cdot x} + C$$

Stammfunktion allgemein: $f(x) = a \cdot b^x = a \cdot e^{x \cdot \ln b} \implies F(x) = \frac{a}{\ln b} \cdot e^{x \cdot \ln b} + C = \frac{a}{\ln b} \cdot b^x + C$







9. Logarithmus funktion: $f(x) = \log_b x$ mit b > 0 (Spezialfall: natürlicher Logarithmus $f(x) = \ln x$)

Nullstellen / gemeinsame Punkte:

$$f(1) = 0$$
 (denn $b^0 = 1$ für alle b)
log_b $b = 1$, speziell ln $e = 1$

Polstellen / Definitionslücken:

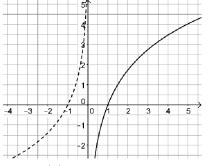
nur für x > 0 definiert;

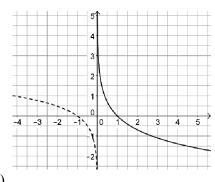
PS für
$$x \to 0$$
: $\lim_{x \to 0} f(x) = -\infty$

Symmetrie: keine

Grenzwerte / Asymptoten:

siehe PS (senkrechte Asymptote x = 0); $\lim_{x \to +\infty} f(x) = +\infty$ (keine Asymptote)





Variationen:

a)
$$a > 0$$
, $f(x) = a \cdot \ln x$ (,,normal", $D = \mathbb{R}^+$, $\lim_{x \to 0} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$)

b)
$$a < 0$$
, $f(x) = a \cdot \ln x$ (an x-Achse gespiegelt, $D = \mathbb{R}^+$, $\lim_{x \to 0} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = -\infty$)

c)
$$a > 0$$
, $f(x) = a \cdot \ln(-x)$ (an y-Achse gespiegelt, $D = \mathbb{R}^{-}$, $\lim_{x \to 0} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = +\infty$)

d)
$$a < 0$$
, $f(x) = a \cdot \ln(-x)$ (punktgespiegelt am Ursprung, $D = \mathbb{R}^-$, $\lim_{x \to 0} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty$)

Ableitung Spezialfall: $f(x) = \ln x \implies f'(x) = \frac{1}{x} / f(x) = a \cdot \ln x \implies f'(x) = \frac{a}{x}$

Ableitung allgemein:
$$f(x) = \log_b x = \frac{\ln x}{\ln b} = \frac{1}{\ln b} \cdot \ln x \implies f'(x) = \frac{\frac{1}{\ln b}}{x} = \frac{1}{x \cdot \ln b}$$

Stammfunktion Spezialfall:
$$f(x) = \ln x \implies F(x) = x \cdot \ln x + C \quad / \quad f(x) = a \cdot \ln x \implies F(x) = a \cdot x \cdot \ln x + C$$

Stammfunktion allgemein:
$$f(x) = \log_b x = \frac{1}{\ln b} \cdot \ln x \implies F(x) = \frac{1}{\ln b} \cdot x \cdot \ln x + C = \frac{x \cdot \ln x}{\ln b} + C$$

10. Trigonometrische Funktionen:

a) $f(x) = \sin x$ / allgemein: $g(x) = a \cdot \sin(bx + c) + d$

Nullstellen von $f: x = k \cdot \pi, k \in \mathbb{Z}$ (also $x \in \{0; \pm \pi; \pm 2\pi; \pm 3\pi; ...\}$)

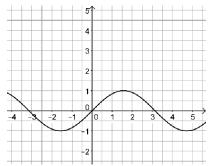
Polstellen / Definitionslücken: keine

Symmetrie von f: Punktsymmetrie zum Ursprung

Grenzwerte / Asymptoten: keine

Ableitung: $f'(x) = \cos x$ / $g'(x) = a \cdot b \cdot \cos(bx + c)$

Stammfunktion: $F(x) = -\cos x + C$ / $G(x) = -\frac{a}{b} \cdot \cos(bx + c) + dx + C$



b) $f(x) = \cos x$ / allgemein: $g(x) = a \cdot \cos(bx + c) + d$

Nullstellen von
$$f: x = \frac{\pi}{2} + k \cdot \pi$$
, $k \in \mathbb{Z}$ (also $x \in \left\{ \pm \frac{\pi}{2}; \pm \frac{3\pi}{2}; \pm \frac{5\pi}{2}; \pm \frac{7\pi}{2}; \ldots \right\}$)

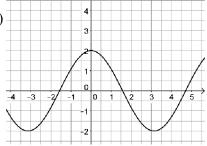
Polstellen / Definitionslücken: keine

Symmetrie von f: Achsensymmetrie zur y-Achse

Grenzwerte / Asymptoten: keine

Ableitung: $f'(x) = -\sin x$ / $g'(x) = -a \cdot b \cdot \sin(bx + c)$

Stammfunktion: $F(x) = \sin x + C$ / $G(x) = \frac{a}{b} \cdot \sin(bx + c) + dx + C$



c) $f(x) = \tan x = \frac{\sin x}{\cos x}$ / allgemein: $g(x) = a \cdot \tan(bx + c) + d$

Nullstellen von f: NS des Zählers, also siehe a)

Polstellen / Definitionslücken: NS des Nenners, also siehe b)

Symmetrie von f: sin PuSy, cos ASy \Rightarrow unterschiedliche Symmetrien

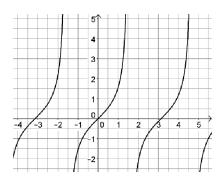
⇒ tan hat Punktsymmetrie zum Ursprung

Grenzwerte / Asymptoten: senkrechte Asymptoten an den Polstellen (mit VZW)

Ableitung: mit Quotientenregel $f'(x) = \frac{1}{\cos^2 x}$ / $g'(x) = \frac{a \cdot b}{\cos^2(bx + c)}$

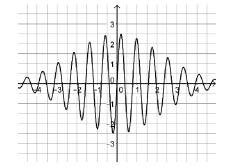
Stammfunktion: $F(x) = -\ln|\cos x| + C$

 $G(x) = -\frac{a}{b} \cdot \ln|\cos(bx + c)| + dx + C$

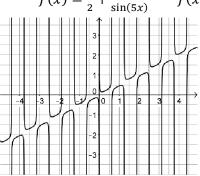


11. ... sowie Kombinationen durch Addition/Subtraktion/Multiplikation/Division/Verkettung dieser Typen

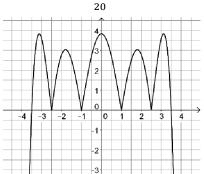
$$f(x) = 2.5 \cdot e^{-0.1x^2} \cdot \sin(8x)$$



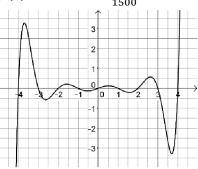
$$f(x) = \frac{x}{2} + \frac{0.05}{\sin(5x)}$$



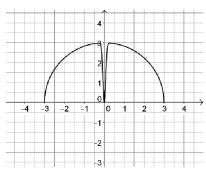
$$(x) = -\frac{|x-3,5| \cdot |x-2,5| \cdot |x-1| \cdot |x+1| \cdot |x+2,5| \cdot |x+3,5|}{20}$$



$$f(x) = \frac{x(x^2-1)(x^2-4)(x^2-9)(x^2-16)}{1500}$$



$$f(x) = \sqrt{9 - x^2} - 3e^{-100x^2}$$



$$f(x) = 0.3x^2 + \frac{1}{2}\cos(20|x|^{1.2}) - 2$$

